
Affine Guidelines to Make Your BI Implementations Easier

Version 1.0 © Affine Limited 2008. www.affine.co.uk http://groups.google.co.uk/group/affine

These guidelines represent the most common ideas that come up during QAs and project reviews, and are mostly “easy wins” that can benefit your project with little
effort, if considered up front. These are not intended to be comprehensive, nor are they a set of design guidelines, rather they are a collection of useful hints and tips
for a more successful BI implementation.

 Guideline Details and Benefits

Use a BW naming convention for
all the main BW objects

Naming conventions provide many benefits in making objects appear in a logical order when configuring,
checking, sorting and for easy identification in for e.g. query builder tools.

As a minimum the following is suggested, and there are many variations on these themes:

MultiProviders can be named MSSFFTNN where M is the Module, SS is the Sub Module, FF are free
characters, T is InfoProvider Type (M for MultiProvider) and NN are consecutive numbers. Example FARDEM01
for Finance, AR, DE for Germany, MultiProvider 1.

Basic InfoProviders can be named MSSFFTNN where M is Module, SS is Sub Module, FF are free characters,
T is the InfoProvider Type (Cube, ODS, Virtual Cube, InfoSet) and NN represents the year when using logical
partitioning by year, or 00 to represent no logical partitioning (so cube contains all years). Example: FARDEC00
for Finance, AR, DE for Germany, Cube contains All Years of data.

InfoObjects are often best left as all free characters, making them as meaningful as possible, but this depends
on your specific environment.

S
tan

d
ard

s

Use ABAP carefully in Includes, in a
modular way and with a naming
convention

If you use Includes to hold your ABAP routines then you get version history, and any code changes you make
can be transported without transporting and reactivating the associated Update Rules or Transformations.

Using ABAP in a modular way means to try to reduce risk in shared exits like ZXRSRU01 by placing each section
of variable code in a separate Form, Include, Function Module or Program. The last two options reduce the risk
of a single compilation error affecting the whole user exit.

Even simple ABAP can appear complicated once it has been “enhanced” with Change Requests a few times. A
consistent ABAP naming convention for global/local variables and internal tables is recommended.

Keep it simple and don’t introduce
unnecessary complexity

Over time, BW designs often get more complex as more functionality is added. When starting from scratch, then,
the data model should be kept as clean and simple as possible. For example, don’t use time dependency if its
not needed and don’t keep more granularity of data if its not needed.

In particular, try to push all data manipulation as far “down” the data flow as possible, ideally to the source
systems, so that BW is not forced to do lots of transformations. Each manipulation is a new test script that needs
written later, and is a potential point of failure for the future.

Keep a Data Flow Diagram that
shows the whole design on one page

It is always useful to have a single Data Flow Diagram that shows a physical representation of the Cubes and
ODSs of the whole system. This is useful for on-boarding new team members, for support teams, and for using
when examining new design additions.

D
esig

n

Data should be correct at point of
entry, not validated and rejected later

A key principle for a successful implementation is to have data correct either before it enters BW, or in a
staging/cleansing layer within BW. This has considerable benefits in reducing complexity.

Performance tune as you go, but
not so much that it slows
development

It is important to consider performance and scalability right from the start of a project. Design and build with this
in mind as you go along and you will save much work later on. Take care, however, not to over-engineer as the
true bottlenecks won’t be known until later on in your performance test phase.

Note also that aggregates are great, but have drawbacks in terms of rollup time. They should not be used as the
default response to performance problems. Consider logical and database partitioning, pre-loading the OLAP
cache and reducing the query result set.

P
erfo

rm
an
ce

Use database and logical
partitioning on all appropriate
InfoCubes

Database partitioning is always worth doing on any InfoCube that you intend to compress. Logical partitioning
(say be Year, or Business Unit) is worth doing for InfoCubes you know will get large before archiving.

Keep systems aligned so that Dev
and QA and Production are reliably
identical

Although BW offers the flexibility to edit many objects directly in each system, take care when doing this. It is
standard to create packages and perhaps amend Process Chain start variants in Production, but do not forget the
golden rule that all systems should be identical. Without this rule, testing in QA is compromised. T

ran
sp
o
rts

Use the BW CTS carefully and
avoid editing transported objects in
target systems

The BW Correction and Transport System has been stable for some time, and editing objects in target systems
should be avoided. There are ABAP programs to activate most common objects if necessary (search for ABAPs
named RS*ACTIVATE*), or you can use the ABAP RSDG_AFTER_IMPORT_FOR_CORR to just run the
process after import step.

If you need to create InfoObjects and Process Chains locally, perhaps directly in Production, then set Object
Changeability to “Changeable Original” in the Transport Connection to allow new objects to be created, but to
preserve the ones sourced from Development.

Use a MultiProvider above all Basic
InfoCubes and ODSs, and only report
from the MultiProvider

This gives two benefits. Firstly, if all queries and authorisations are written from the MultiProvider, then it is very
easy to “plug” and “unplug” new Cubes underneath the MultiProvider. This has huge flexibility benefits, allowing
various sorts of logical partitioning to be done in future.

Secondly, this approach allows two sets of dimension definitions to be defined. On the Basic InfoCubes the
dimensions can be structured to suit performance, and on the MultiProvider they can be structured to suit end
users creating queries.

R
ep
o
rtin

g

Allow users to create queries in
production, and often used user
created queries should become
standard

BW has powerful end user tools and super users should be allowed to create queries in production. One
approach is to allow users to create, but not share queries. Then, if they like the query, they request the support
team that it is created “properly” in Development and transported. The benefits here are the query can be used in
QA for performance testing, and regression testing after upgrades.

Affine are a specialist Performance Management Consultancy based in Surrey, England. Affine provide consultancy and resources for the evaluation, planning

and delivery of projects that have SAP Business Intelligence at their core. Contact us at info@affine.co.uk.

